

Reg.	No.	
Name		

Fourth Semester B.Tech. Degree Examination, May 2013 (2008 Scheme)

Branch : Electrical and Electronics
08.403 : ENGINEERING ELECTRO-MAGNETICS (E)

Time: 3 Hours Max. Marks: 100

Instruction: Answer all questions from Part A and one full question from each Module of Part B.

PART-A

- 1. Find the vector projection of $\vec{A} = 2ax + ay 2az$ on $\vec{B} = 5ax 10ay + 3az$.
- 2. Transform the point P (4, 105°, 56°) to the other two co-ordinate systems.
- 3. Point charges each of value $\sqrt{4\pi\epsilon_0}$ coulomb are located at the corners of a 3 sided polygon of side a. Find the force on each charge.
- 4. Calculate the capacitance per km length of an air-filled co-axial cable with inner diameter 6 mm and outer diameter 14 mm.
- 5. Write the forms of Laplace's equation in Cartesian, cylindrical and spherical co-ordinate systems.
- 6. Distinguish between scalar magnetic potential and vector magnetic potential.
- 7. Explain what is a standing wave if SWR is 4 find reflection co-efficient.
- 8. State and explain Stokes theorem.
- 9. State the Maxwells equations. Give the equations in differential form.
- 10. Define propagation constant and attenuation constant.

PART-B

Module - I

11. a) Transform the vector $\vec{F} = \gamma^{-1} \vec{a_r}$ in spherical co-ordinates to Cartesian co-ordinates.

8

b) A point charge of 100 pc is located at origin, while a uniform line charge of 5 nc/m is located at z = 3 m y = 3 m. If the plane z = 5 m also carries a charge of 5 nc/m². Find E at point (1, 1, 1).

12

12. a) Derive the expression for electric field intensity at a point distant 'r' from an electric dipole of dipole moment p.

10

b) Given D = $2xy \overline{ax} + x^2 \overline{ay} c/m^2$ in Cartesian co-ordinates. Verify Gauss divergence theorem for volume enclosed by $0 \le x \le 1$, $0 \le y \le 2$ and $0 \le z \le 3$.

10

Module - II

13. a) State and explain Biot - Savarts Law.

8

b) Three very long parallel conductors are in free space. They lie in one plane spaced by 50 cm. Each of the conductor carries a current of 100 A, so that in the first and second the current has the same direction. What is the force acting on a metre length of first, second and third conductor?

12

14. a) A circuit carrying a current of 'l' amperes form a regular polygon of 'n' sides inscribed in a circumscribing circle of radius R. Calculate the magnetic flux density B at the centre of the polygon.

10

b) A cylindrical conductor of radius 10^{-2} m has an internal magnetic field

H=
$$4.77 \times 10^4 \left(\frac{\gamma}{2} - \frac{10^2 \text{ m}^2}{3 \times 10^{-2}}\right)$$
 and A/m. What is the total current in the conductor? 10

Module - III

15.	a)	State Poynting theorem. Derive Poynting theorem starting from Maxwells Equation.	10
16.	b)	Find skin depth, propagation constant, and velocity of propagation at a frequency of 100 MHz for aluminium with $\sigma=36.8$ mhos / m, $~\mu_r=1.$	10
	a)	Derive the Wave equations in free space. Show that the ratio of electric field intensity to magnetic field intensity is impedance and find its value.	10
	b)	Derive transmission line equations.	10